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Abstract. A study has been made of the layer and local susceptibilities of the four- 
dimensional n = 0 (self-avoiding walk) model. A renormalisation group calculation for 
general n gives xl(t) - At-’/’/ln t l (n+2) /2 (n+8)  andxll(t)  - B  + Ci1’211n t l - (n+2) ’2 (n+8)  where 
t = (T- T,)/T,. Series expansions to 11th order have been generated for these quantities 
for n = 0, and analysis allows estimates of A, B and C to be made. These are then shown to 
be qualitatively similar to known exact amplitudes for the analogous spherical model. 

1. Introduction 

In an earlier paper (Barber et a1 1978) the critical behaviour of the layer and local 
susceptibilities of the two- and three-dimensional n-vector model in the n = O  (self- 
avoiding walk) limit was studied. Using exact series expansions, estimates of the critical 
exponents were obtained both by standard methods (Gaunt and Guttmann 1974) and 
by ‘tailor made’ methods appropriate to the particular problem. In this study of the 
four-dimensional model, we have obtained exact series expansions, and additionally 
have calculated the critical exponents using renormalisation group arguments, which 
are expected to be exact in four dimensions. Given the critical exponents, series 
analysis is used to provide estimates of the critical amplitudes. (The critical tempera- 
ture was obtained in an earlier paper (Guttmann 1978).) 

The Hamiltonian for the model is 

The above Hamiltonian applies to a system of n component spins ~ $ 3  (a = 1,2,  . . . , n )  
on a d-dimensional semi-infinite hypercubic lattice of N spins, with n’ = O(N‘d-l’/d) 
spins in the (d - 1)-dimensional surface hyperplane. The first summation is over 
nearest neighbour pairs. The magnetic field HI couples to the ‘1’ component of each 
spin, while a surface field, Hi, couples to the ‘1’ component of each surface spin. The 
layer susceptibility is defined by x1 = -a2F/aHaH1 and the local susceptibility is defined 
by xll = -a2F/aH:. Near the critical temperature, parametrised by the variable 
t = ( T -  T,)/T,, one has x1 - t -Y1 , ~ 1 1 -  t-”“. In four dimensions, y1 = 5 = -yll  which 
follows from mean field theory, but as expected at the critical dimension, the 
appearance of ultraviolet divergences signals the presence of confluent logarithmic 
terms. In fact, as we show in the next section, x ~ - A t - ~ / ~ l l n  tl(n+2)’2(n+8) and x11- 
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B + ctI/2lln tl-(n+2)/2(n+8) , which may be compared to the bulk result x- 
. In the third section we discuss the generation an’d analysis of exact 

series expansions, which permit the estimates of the amplitudes A, B and C to be made. 
~ ~ - 1 1 1 ~  t l  ( n+2) / (n+8)  

2. Renormalisation group calculations 

In the momentum representation the Hamiltonian for the system is 

J 

where q = ( p ,  k), p being a (d - 1)-dimensional vector, vq = ( - p ,  k )  and the Fourier 
expansion functions are 

C C ~ , ( X )  = JZ exp(ip. p )  sin(kz +a). 
We will particularise to the case where the spin interaction strength in the surface is the 
same as in the bulk, so that = k (see Lubensky and Rubin 1975a). The position 
variable X = (p, z )  and the d - 1 components of p extend from plus to minus infinity and 
O S t < 0 3 .  

To calculate the susceptibilities in four dimensions we need to solve the Callen- 
Symanzik equation for the two-point vertex function defined as the inverse of the 
two-point Green’s function, that is, 

J 

That there is only one correlation length involved is manifest by the Wilson 
functions being proportional to S(kl - k2)  - S ( k l +  k2) .  For instance in the minimal 
subtraction scheme, only terms in rf)(kl, k2)  that are proportional to S(kl - k2) - 
S ( k l  + k2) have poles in E = 4 - d. Consequently we can immediately write down the 
Callen-Symanzik equation (BrCzin et a1 1976) for the renormalised two-point vertex 
function, 

= O  

where t, g and /L are the renormalised mass squared, the coupling constant and the 
momentum scale parameter respectively, and 

w(g) = $(n + 8)g2 

77 (g) = 7% + 2 1 2  

l /v(g)  - 2 = -g(n + 2)g 

are given by BrCzin et a1 (1976). 
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The Callen-Symanzik equation is solved using the standard method of charac- 
teristics. Defining g(A) and t ( A )  via 

and 

we obtain 

with 

Solving the above equations with the initial conditions g(1) = g, t(1) = t in the small-g 
region gives 

n + 2  
Z = e x p (  - 12(n +8) 

g(A) - Iln A 1-l 

t - (A~)2(g(A))-'"+2'/'"C8' - (AF)211n A l ( n + 2 ) / ( n + 8 )  

where we have put t ( A )  = (Ap)'. 
Using Z = 1 and dimensional analysis gives 

r,R(ki, kz, t, g, p)=FArpRlAw(kilAF, k z l h  t ( A ) l h  g(A), 1) 

which we invert to find an equation for GF(k1, kz) that is subsequently inverse Fourier 
transformed to an equation for G;(z1, z z ) ,  namely 

G t ( A ~ z i ,  AVZ, g@),  1). -1/Z - ( n + 2 ) / 2 ( n + 8 )  G ! ( z i , ~ z , t , g , ~ ) = t  g 

Into this we can substitute the mean field function 

Gg(zi, zz, t, g, F )  

= --${[U - A I .  A F ) / ( l + A l .  A~) l exp( -A~ . / z l+z~ l ) - exp( -A~/z l - z~1>}  

= Go(zi, zz) 

given by Lubensky and Rubin (1975b) ( A l  is the extrapolation length). 
It is now a simple matter to find the scaling relations for the susceptibilities 
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Substituting for Ap and g(A) in terms of t gives - t-llln t l (n+2) / (n+8)  

x1 - t-1/211n tl(n+2)/2(n+8) 

xll - t1/211n t l - (n+2)/2(n+8) 

A check on the above results is obtained by writing the mean field Green’s function 
in terms of the correlation length 6 = t - l l 2  (equation 4.6 of Lubensky and Rubin 
(1975b)) and then substituting in the corrected value of 

6 = t-1/211n t l (n+2) /2 (n+8)  

which then yields expressions for x1 and xll in agreement with those obtained above. 
Further, in the limit as n + CO, the results agree with those obtained by Barber (1974) 

for the spherical model. 

3. Series calculations 

As shown in Barber et a1 (1978), the graphs contributing to the layer susceptibility x1 in 
the n = 0 case are just self-avoiding walks with one end attached to the surface-called 
TASAWS, an acronym for terminally attached self-avoiding walks. For the local suscep- 
tibility xll the appropriate graphs in the n = 0 case are self-avoiding walks which both 
start and finish on the surface. 

Series expansions for ,yl and xll  have been obtained by enumerating the above class 
of walks on a four-dimensional lattice, taking account of appropriate symmetries. 
Coefficients up to and including v l 1  in the reduced high-temperature isothermal 
susceptibility series k B T x l / m 2  = LO anvn and kBTXlllmZ = X n a o  bnvn were 
obtained. As a by-product of this calculation the mean-square-end-to-end distance of 
TASAWS was also obtained, though no subsequent analysis of this series has been 
attempted. These series are shown in table 1. 

Table 1. Series expansion coefficients of the local susceptibility xl, the layer susceptibility 
xl1 and the mean-square-end-to-end distances of TASAWS for the four-dimensional 
n-vector model with n =O.  

Local Layer Mean-square-end- 
susceptibility susceptibility to-end-distance 

n x1 x11 Of TASAWS (R;) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 
7 

43 
271 

1705 
10 927 
70 159 

454 97s 
2 954 977 

19 303 531 
126 259 225 
828 984 223 

1 
6 

30 
156 
816 

4 so0 
25 176 

146 028 
853 776 

5 105 652 
30 653 760 

186 886 296 

1*000 000 000 00 
2.325 581 395 30 
3,686 346 863 50 
5.154 252 199 40 
6,618 376 498 60 
8.162 202 996 10 
9.706 834 441 50 

11.314 225 457 60 
12.925 302 578 10 
14585 664 532 60 
16.250 057 068 90 
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The critical value of the expansion variable for the bulk system was obtained in an 
earlier study (Guttmann 1978) and is l / u c  = 6*7720* 0*0005. As shown in Barber et a1 
(1978), the surface and layer susceptibilities also diverge at the same critical tempera- 
ture as the bulk system. 

Though the renormalisation group analysis yields estimates of the exponents 
multiplying the confluent logarithmic terms, we thought it worthwhile to see if these 
could be extracted from the series. The method used was that described in Guttmann 
(1978). Unfortunately, the results were quite disappointing, in that a wide range of 
values of the confluent logarithmic exponent seemed to be possible. It is at least 
reassuring to note that this wide range included the exact values obtained from RG 
analysis. We only mention these calculations for the sake of completeness, and to 
suggest that these series constitute an excellent benchmark for any new method of 
analysis for confluent logarithms that may be proposed. 

In order to analyse the series for critical amplitudes, given the critical exponents and 
critical temperatures, we first transformed the series using the transformation u + 
x / ( 2  - x / x c ) .  This leaves uc as a fixed point of the transformation, but maps -uc to 
infinity, thus removing the effect of the non-physical (antiferromagnetic) singularity at 
u = -uc. Such a singularity is expected to be present in hypercubic lattices of any 
dimensionality d >  1. Given the new series x T ( x ) = ~ ~ ( u ) ,  we divided out by the 
singular part, ( ~ ~ / u ) ' / ~ ( l  - u/uc)-''211n(l - u / u , ) ~ ' / ~ .  The factor ( ~ , / u ) ' / ~  is introduced 
to remove the branch point at the origin, but does not affect the estimate of the 
amplitude. The resultant series is then an expansion for the amplitude. That is, 
given k B T X l ( v ) / m 2  - B ( u ) ( l  - u/uc)-'/2~ln(l - ~ / u , ) l ' / ~  we formed the series k B T , T  ( x )  
(x/xc)1'8(l - x/xc)'/211n(l -x /xc ) i -1 /8 /m - 2-ll2B(x), where the factor 2-'" arises 
from the transformation. The amplitude 2-'l2B(xc) was estimated by forming diagonal 
and off -diagonal Pad6 approximants to the series, and evaluating these at x = x c  = uc. 

Convergence was moderately good, enabling the estimate 2-1/2B(xc) = 2.8 f 0.2 to 
be made. A similar analysis was then performed for xll(u), though modification had to 
be made to take account of the fact that the singularity is cusp like. That is, since 
kBTXll(u)/m2 - C(u)+D(u) ( l -  v/uc)'/211n(l - u/uc) l -1 /8,  near u = uc the analytic part 
C(u) will dominate. Therefore division by the vanishing singular part (1- 
v/vc)1/211n( 1 - ~ / u , ) l - ' / ~  would introduce a diverging singular part. To overcome this, 
the term C(u) must first be removed, and this was done by evaluating Pad6 approxi- 
mants to xll(u) at u = uc. These were quite well converged, enabling the estimate 
kTxtl(uc)/m2 = 6*10*0*10 to be made. Subtracting this value from the original series 
then results in a series in which the singular part factors, and so can be removed by 
division as was done in the analysis of xl(u). 

Repeating the transformation and division operations performed in the analysis of 
xl(v) leads to a series for the amplitude 21 /20(u) .  Evaluating Pad6 approximants to 
this series at u = uc gives reasonably well converged approximants, enabling the 
estimate D(uc) = -10.1 fO.9 to be made. Thus near T, we can-write 

kTxl(u)/m2-4-0(1 - u/uc)-''2/ln(1 - u/uC)l'/ ' 

k T ~ l l ( u ) / m ~ - 6 v l -  10*1(1 -u/uc)1'2/ln(l -u /uc ) / - "8 ,  

and 

For the analogous four-dimensional spherical model with a free surface, Barber (1974) 
has evaluated the corresponding amplitudes exactly, and finds 

JX1(K)/m - 0.028 13(Kc - K)-'/2(ln(Kc -K)( ' j2  
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JX ( K )  / m - 0.5 - 17.7 7 2 ( K ~  - K )  1/2 1 In ( K ~  - K )  /-'I2 

where K = J/kT. 
Recasting our results for the n = 0 case into a directly comparable form, we obtain 

Jxl(K)/m2 - 0*23(Kc- K)-1/211n(K,- K)I1I8 

and 

Jx11(K)/m2 - 0.90 - 3.9(Kc - K)1/2/ln(Kc - K)l-1'8. 

Corresponding amplitudes are of similar sign, and can be compared in magnitude in the 
following sense. For the spherical model the product of the amplitudes of the singular 
parts of x1 andxl l  is exactly - t ,  which is just the value of -Jxl1(KC)/m2. This is not just 
numerology, but follows from equations (60) and (62) in Barber. That is, these 
observations can, be made without knowing the values of the amplitudes. The cor- 
responding amplitudes in the n = 0 case give -0-90 for the products of the amplitudes of 
the singular parts, which is in precise agreement with the value of -Jxl1(Kc)/m2 for this 
model. Whether this is a feature of all four-dimensional n -vector models remains to be 
seen. 
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