Critical behaviour of the four-dimensional $\mathrm{n}=0$ model with a free surface

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 133495
(http://iopscience.iop.org/0305-4470/13/11/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 04:40

Please note that terms and conditions apply.

Critical behaviour of the four-dimensional $n=0$ model with a free surface

A J Guttmann and J S Reeve
Department of Mathematics, University of Newcastle, New South Wales 2308, Australia

Received 9 April 1980, in final form 3 June 1980

Abstract

A study has been made of the layer and local susceptibilities of the fourdimensional $n=0$ (self-avoiding walk) model. A renormalisation group calculation for general n gives $\chi_{1}(t) \sim A t^{-1 / 2}|\ln t|^{(n+2) / 2(n+8)}$ and $\chi_{11}(t) \sim B+C t^{1 / 2}|\ln t|^{-(n+2) / 2(n+8)}$ where $t=\left(T-T_{\mathrm{c}}\right) / T_{\mathrm{c}}$. Series expansions to 11th order have been generated for these quantities for $n=0$, and analysis allows estimates of A, B and C to be made. These are then shown to be qualitatively similar to known exact amplitudes for the analogous spherical model.

1. Introduction

In an earlier paper (Barber et al 1978) the critical behaviour of the layer and local susceptibilities of the two- and three-dimensional n-vector model in the $n=0$ (selfavoiding walk) limit was studied. Using exact series expansions, estimates of the critical exponents were obtained both by standard methods (Gaunt and Guttmann 1974) and by 'tailor made' methods appropriate to the particular problem. In this study of the four-dimensional model, we have obtained exact series expansions, and additionally have calculated the critical exponents using renormalisation group arguments, which are expected to be exact in four dimensions. Given the critical exponents, series analysis is used to provide estimates of the critical amplitudes. (The critical temperature was obtained in an earlier paper (Guttmann 1978).)

The Hamiltonian for the model is

$$
H=-J \sum_{\langle i, j\rangle} \sum_{\alpha=1}^{n} \mu_{i, \alpha}^{(n)} \mu_{j, \alpha}^{(n)}-m H_{1} \sum_{i=1}^{N} \mu_{i, 1}^{(n)}-m H_{1}^{\prime} \sum_{i=1}^{n^{\prime}} \mu_{i, 1}^{(n)} .
$$

The above Hamiltonian applies to a system of n component spins $\mu_{i, \alpha}^{(n)}(\alpha=1,2, \ldots, n)$ on a d-dimensional semi-infinite hypercubic lattice of N spins, with $n^{\prime}=\mathrm{O}\left(N^{(d-1) / d}\right)$ spins in the ($d-1$)-dimensional surface hyperplane. The first summation is over nearest neighbour pairs. The magnetic field H_{1} couples to the ' 1 ' component of each spin, while a surface field, H_{1}^{\prime}, couples to the ' 1 ' component of each surface spin. The layer susceptibility is defined by $\chi_{1}=-\partial^{2} F / \partial H \partial H_{1}$ and the local susceptibility is defined by $\chi_{11}=-\partial^{2} F / \partial H_{1}^{2}$. Near the critical temperature, parametrised by the variable $t=\left(T-T_{\mathrm{c}}\right) / T_{\mathrm{c}}$, one has $\chi_{1} \sim t^{-\gamma_{1}}, \chi_{11} \sim t^{-\gamma_{11}}$. In four dimensions, $\gamma_{1}=\frac{1}{2}=-\gamma_{11}$ which follows from mean field theory, but as expected at the critical dimension, the appearance of ultraviolet divergences signals the presence of confluent logarithmic terms. In fact, as we show in the next section, $\chi_{1} \sim A t^{-1 / 2}|\ln t|^{(n+2) / 2(n+8)}$ and $\chi_{11} \sim$
$B+C t^{1 / 2}|\ln t|^{-(n+2) / 2(n+8)}$, which may be compared to the bulk result $\chi \sim$ $D t^{-1}|\ln t|^{(n+2) /(n+8)}$. In the third section we discuss the generation and analysis of exact series expansions, which permit the estimates of the amplitudes A, B and C to be made.

2. Renormalisation group calculations

In the momentum representation the Hamiltonian for the system is

$$
\begin{aligned}
H=\frac{1}{2} \int \mathrm{~d}^{d} q(& \left.m^{2}+q^{2}\right) \phi_{i}(\boldsymbol{q}) \phi_{i}(\nu \boldsymbol{q}) \\
& +\left(g_{0} / 4!\right) \frac{1}{8} \sum_{\epsilon_{i}= \pm 1} \epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4} \int\left(\prod_{i} \mathrm{~d}^{d} q_{i}\right) \phi_{i}\left(\boldsymbol{q}_{1}\right) \phi_{i}\left(\boldsymbol{q}_{2}\right) \phi_{j}\left(\boldsymbol{q}_{3}\right) \phi_{i}\left(\boldsymbol{q}_{4}\right) \\
& \times \delta^{d-1}\left(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}+\boldsymbol{p}_{3}+\boldsymbol{p}_{4}\right) \delta\left(\sum_{i} \boldsymbol{\epsilon}_{i} k_{i}\right)
\end{aligned}
$$

where $\boldsymbol{q}=(\boldsymbol{p}, k), \boldsymbol{p}$ being a $(d-1)$-dimensional vector, $\nu \boldsymbol{q}=(-\boldsymbol{p}, k)$ and the Fourier expansion functions are

$$
\psi_{q}(\boldsymbol{X})=\sqrt{2} \exp (\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{\rho}) \sin (k z+\Phi)
$$

We will particularise to the case where the spin interaction strength in the surface is the same as in the bulk, so that $\Phi=k$ (see Lubensky and Rubin 1975a). The position variable $\boldsymbol{X}=(\boldsymbol{\rho}, z)$ and the $d-1$ components of $\boldsymbol{\rho}$ extend from plus to minus infinity and $0 \leqslant z<\infty$.

To calculate the susceptibilities in four dimensions we need to solve the CallenSymanzik equation for the two-point vertex function defined as the inverse of the two-point Green's function, that is,

$$
2 \int \mathrm{~d} k \Gamma_{\mathrm{p}}^{(2)}\left(k_{1}, k_{2}\right) G_{\mathrm{p}}^{(2)}\left(k_{2}, k_{3}\right)=\delta\left(k_{1}-k_{3}\right)-\delta\left(k_{1}+k_{3}\right) .
$$

That there is only one correlation length involved is manifest by the Wilson functions being proportional to $\delta\left(k_{1}-k_{2}\right)-\delta\left(k_{1}+k_{2}\right)$. For instance in the minimal subtraction scheme, only terms in $\Gamma_{\mathrm{p}}^{(2)}\left(k_{1}, k_{2}\right)$ that are proportional to $\delta\left(k_{1}-k_{2}\right)$ $\delta\left(k_{1}+k_{2}\right)$ have poles in $\epsilon=4-d$. Consequently we can immediately write down the Callen-Symanzik equation (Brézin et al 1976) for the renormalised two-point vertex function,

$$
\begin{gathered}
{\left[\mu \frac{\partial}{\partial \mu}+w(g) \frac{\partial}{\partial g}-\eta(g)-\left(\frac{1}{\nu(g)}-2\right) t \frac{\partial}{\partial t}\right] \Gamma_{\mathrm{p}}^{\mathrm{R}}\left(k_{1}, k_{2}, t, g, \mu\right)\left(\delta\left(k_{1}-k_{2}\right)-\delta\left(k_{1}+k_{2}\right)\right)} \\
=0
\end{gathered}
$$

where t, g and μ are the renormalised mass squared, the coupling constant and the momentum scale parameter respectively, and

$$
\begin{aligned}
& w(g)=\frac{1}{6}(n+8) g^{2} \\
& \eta(g)=\frac{1}{72}(n+2) g^{2} \\
& 1 / \nu(g)-2=-\frac{1}{6}(n+2) g
\end{aligned}
$$

are given by Brézin et al (1976).

The Callen-Symanzik equation is solved using the standard method of characteristics. Defining $g(\lambda)$ and $t(\lambda)$ via

$$
\frac{\mathrm{d} g(\lambda)}{\mathrm{d} \ln \lambda}=W(g)
$$

and

$$
\frac{d \ln t(\lambda)}{d \ln \lambda}=-\left(\frac{1}{\nu(g(\lambda))}-2\right)
$$

we obtain

$$
\Gamma_{\mathfrak{p}}^{\mathrm{R}}\left(k_{1}, k_{2}, t, g, \mu\right)=Z(\lambda) \Gamma_{\mathfrak{p}}^{\mathrm{R}}\left(k_{1}, k_{2}, t(\lambda), g(\lambda), \lambda \mu\right)
$$

with

$$
\ln Z(\lambda)=-\int_{g}^{g(\lambda)} \frac{\eta\left(g^{\prime}\right)}{W\left(g^{\prime}\right)} \mathrm{d} g^{\prime}
$$

Solving the above equations with the initial conditions $g(1)=g, t(1)=t$ in the small- g region gives

$$
\begin{aligned}
& Z=\exp \left(-\frac{n+2}{12(n+8)} g(\lambda)\right) \approx 1 \\
& g(\lambda) \sim|\ln \lambda|^{-1} \\
& t \sim(\lambda \mu)^{2}(g(\lambda))^{-(n+2) /(n+8)} \sim(\lambda \mu)^{2}|\ln \lambda|^{(n+2) /(n+8)}
\end{aligned}
$$

where we have put $t(\lambda)=(\lambda \mu)^{2}$.
Using $Z \approx 1$ and dimensional analysis gives

$$
\Gamma_{\mathrm{p}}^{\mathrm{R}}\left(k_{1}, k_{2}, t, g, \mu\right)=\mu \lambda \Gamma_{\mathrm{p} / \lambda \mu}^{\mathrm{R}}\left(k_{1} / \lambda \mu, k_{2} / \lambda \mu, t(\lambda) / \lambda \mu, g(\lambda), 1\right)
$$

which we invert to find an equation for $G_{\mathrm{p}}^{\mathrm{R}}\left(k_{1}, k_{2}\right)$ that is subsequently inverse Fourier transformed to an equation for $G_{0}^{\mathrm{R}}\left(z_{1}, z_{2}\right)$, namely

$$
G_{0}^{\mathrm{R}}\left(z_{1}, z_{2}, t, g, \mu\right)=t^{-1 / 2} g^{-(n+2) / 2(n+8)} G_{0}^{\mathrm{R}}\left(\lambda \mu z_{1}, \lambda \mu z_{2}, g(\lambda), 1\right) .
$$

Into this we can substitute the mean field function

$$
\begin{aligned}
G_{0}^{2}\left(z_{1}, z_{2}, t\right. & , g, \mu) \\
& =-\frac{1}{2}\left\{\left[\left(1-\lambda_{1} \cdot \lambda \mu\right) /\left(1+\lambda_{1} \cdot \lambda \mu\right)\right] \exp \left(-\lambda \mu\left|z_{1}+z_{2}\right|\right)-\exp \left(-\lambda \mu\left|z_{1}-z_{2}\right|\right)\right\} \\
& =G_{0}\left(z_{1}, z_{2}\right)
\end{aligned}
$$

given by Lubensky and Rubin (1975b) (λ_{1} is the extrapolation length).
It is now a simple matter to find the scaling relations for the susceptibilities

$$
\begin{aligned}
& \chi=\lim _{z_{1} \rightarrow \infty} \sum_{z_{2} \geqslant 0} G_{0}\left(z_{1}, z_{2}\right) \\
& \chi_{1}=\sum_{z_{2} \geqslant 0} G_{0}\left(0, z_{2}\right) \\
& \chi_{11}=G_{0}(0,0) .
\end{aligned}
$$

Substituting for $\lambda \mu$ and $g(\lambda)$ in terms of t gives

$$
\begin{aligned}
& \chi \sim t^{-1}|\ln t|^{(n+2) /(n+8)} \\
& \chi_{1} \sim t^{-1 / 2}|\ln t|^{(n+2) / 2(n+8)} \\
& \chi_{11} \sim t^{1 / 2}|\ln t|^{-(n+2) / 2(n+8)} .
\end{aligned}
$$

A check on the above results is obtained by writing the mean field Green's function in terms of the correlation length $\xi=t^{-1 / 2}$ (equation 4.6 of Lubensky and Rubin (1975b)) and then substituting in the corrected value of

$$
\xi=t^{-1 / 2}|\ln t|^{(n+2) / 2(n+8)}
$$

which then yields expressions for χ_{1} and χ_{11} in agreement with those obtained above.
Further, in the limit as $n \rightarrow \infty$, the results agree with those obtained by Barber (1974) for the spherical model.

3. Series calculations

As shown in Barber et al (1978), the graphs contributing to the layer susceptibility χ_{1} in the $n=0$ case are just self-avoiding walks with one end attached to the surface-called tasaws, an acronym for terminally attached self-avoiding walks. For the local susceptibility χ_{11} the appropriate graphs in the $n=0$ case are self-avoiding walks which both start and finish on the surface.

Series expansions for χ_{1} and χ_{11} have been obtained by enumerating the above class of walks on a four-dimensional lattice, taking account of appropriate symmetries. Coefficients up to and including v^{11} in the reduced high-temperature isothermal susceptibility series $k_{\mathrm{B}} T_{\chi_{1}} / m^{2}=\Sigma_{n \geqslant 0} a_{n} v^{n}$ and $k_{\mathrm{B}} T_{\chi_{11}} / m^{2}=\Sigma_{n \geqslant 0} b_{n} v^{n}$ were obtained. As a by-product of this calculation the mean-square-end-to-end distance of TASAWs was also obtained, though no subsequent analysis of this series has been attempted. These series are shown in table 1.

Table 1. Series expansion coefficients of the local susceptibility χ_{1}, the layer susceptibility χ_{11} and the mean-square-end-to-end distances of TASAWs for the four-dimensional n-vector model with $n=0$.

	Local susceptibility χ_{1}	Layer susceptibility χ_{11}	Mean-square-end- to-end-distance of TASAWs $\left\langle R_{n}^{2}\right\rangle$
0	1	1	-
1	7	6	$1 \cdot 00000000000$
2	43	30	2.32558139530
3	271	156	3.68634686350
4	10927	816	5.15425219940
5	70159	4500	6.61837649860
6	454975	146028	8.16220299610
7	2954977	853776	11.31422545760
8	19303531	5105652	12.92530257810
9	126259225	30653760	14.58566453260
10	828984223	186886296	16.25005706890
11			

The critical value of the expansion variable for the bulk system was obtained in an earlier study (Guttmann 1978) and is $1 / v_{c}=6.7720 \pm 0 \cdot 0005$. As shown in Barber et al (1978), the surface and layer susceptibilities also diverge at the same critical temperature as the bulk system.

Though the renormalisation group analysis yields estimates of the exponents multiplying the confluent logarithmic terms, we thought it worthwhile to see if these could be extracted from the series. The method used was that described in Guttmann (1978). Unfortunately, the results were quite disappointing, in that a wide range of values of the confluent logarithmic exponent seemed to be possible. It is at least reassuring to note that this wide range included the exact values obtained from RG analysis. We only mention these calculations for the sake of completeness, and to suggest that these series constitute an excellent benchmark for any new method of analysis for confluent logarithms that may be proposed.

In order to analyse the series for critical amplitudes, given the critical exponents and critical temperatures, we first transformed the series using the transformation $v \rightarrow$ $x /\left(2-x / x_{\mathrm{c}}\right)$. This leaves v_{c} as a fixed point of the transformation, but maps $-v_{\mathrm{c}}$ to infinity, thus removing the effect of the non-physical (antiferromagnetic) singularity at $v=-v_{\mathrm{c}}$. Such a singularity is expected to be present in hypercubic lattices of any dimensionality $d>1$. Given the new series $\chi_{1}^{*}(x)=\chi_{1}(v)$, we divided out by the singular part, $\left(v_{c} / v\right)^{1 / 8}\left(1-v / v_{\mathrm{c}}\right)^{-1 / 2}\left|\ln \left(1-v / v_{\mathrm{c}}\right)\right|^{1 / 8}$. The factor $\left(v_{\mathrm{c}} / v\right)^{1 / 8}$ is introduced to remove the branch point at the origin, but does not affect the estimate of the amplitude. The resultant series is then an expansion for the amplitude. That is, given $k_{\mathrm{B}} T_{\chi_{1}}(v) / m^{2} \sim B(v)\left(1-v / v_{\mathrm{c}}\right)^{-1 / 2}\left|\ln \left(1-v / v_{\mathrm{c}}\right)\right|^{1 / 8}$ we formed the series $k_{\mathrm{B}} T_{\chi}{ }_{1}^{*}(x)$ $\left(x / x_{\mathrm{c}}\right)^{1 / 8}\left(1-x / x_{\mathrm{c}}\right)^{1 / 2}\left|\ln \left(1-x / x_{\mathrm{c}}\right)\right|^{-1 / 8} / m^{2} \sim 2^{-1 / 2} B(x)$, where the factor $2^{-1 / 2}$ arises from the transformation. The amplitude $2^{-1 / 2} B\left(x_{\mathrm{c}}\right)$ was estimated by forming diagonal and off-diagonal Padé approximants to the series, and evaluating these at $x=x_{c}=v_{c}$.

Convergence was moderately good, enabling the estimate $2^{-1 / 2} B\left(x_{\mathrm{c}}\right)=2 \cdot 8 \pm 0 \cdot 2$ to be made. A similar analysis was then performed for $\chi_{11}(v)$, though modification had to be made to take account of the fact that the singularity is cusp like. That is, since $k_{\mathrm{B}} T \chi_{11}(v) / m^{2} \sim C(v)+D(v)\left(1-v / v_{\mathrm{c}}\right)^{1 / 2}\left|\ln \left(1-v / v_{\mathrm{c}}\right)\right|^{-1 / 8}$, near $v=v_{\mathrm{c}}$ the analytic part $C(v)$ will dominate. Therefore division by the vanishing singular part (1$\left.v / v_{\mathrm{c}}\right)^{1 / 2}\left|\ln \left(1-v / v_{\mathrm{c}}\right)\right|^{-1 / 8}$ would introduce a diverging singular part. To overcome this, the term $C(v)$ must first be removed, and this was done by evaluating Padé approximants to $\chi_{11}(v)$ at $v=v_{c}$. These were quite well converged, enabling the estimate $k T \chi_{11}\left(v_{c}\right) / m^{2}=6 \cdot 10 \pm 0 \cdot 10$ to be made. Subtracting this value from the original series then results in a series in which the singular part factors, and so can be removed by division as was done in the analysis of $\chi_{1}(v)$.

Repeating the transformation and division operations performed in the analysis of $\chi_{1}(v)$ leads to a series for the amplitude $2^{1 / 2} D(v)$. Evaluating Padé approximants to this series at $v=v_{c}$ gives reasonably well converged approximants, enabling the estimate $D\left(v_{c}\right)=-10.1 \pm 0.9$ to be made. Thus near T_{c} we can write

$$
k T_{\chi_{1}}(v) / m^{2} \sim 4 \cdot 0\left(1-v / v_{\mathrm{c}}\right)^{-1 / 2}\left|\ln \left(1-v / v_{\mathrm{c}}\right)\right|^{1 / 8}
$$

and

$$
k T_{\chi_{11}}(v) / m^{2} \sim 6 \cdot 1-10 \cdot 1\left(1-v / v_{c}\right)^{1 / 2}\left|\ln \left(1-v / v_{\mathrm{c}}\right)\right|^{-1 / 8} .
$$

For the analogous four-dimensional spherical model with a free surface, Barber (1974) has evaluated the corresponding amplitudes exactly, and finds

$$
J_{\chi_{1}}(K) / m^{2} \sim 0.02813\left(K_{\mathrm{c}}-K\right)^{-1 / 2}\left|\ln \left(K_{\mathrm{c}}-K\right)\right|^{1 / 2}
$$

$$
J_{\chi_{11}}(K) / m^{2} \sim 0.5-17.772\left(K_{\mathrm{c}}-K\right)^{1 / 2}\left|\ln \left(K_{\mathrm{c}}-K\right)\right|^{-1 / 2}
$$

where $K=J / k T$.
Recasting our results for the $n=0$ case into a directly comparable form, we obtain

$$
J_{\chi_{1}}(K) / m^{2} \sim 0.23\left(K_{\mathrm{c}}-K\right)^{-1 / 2}\left|\ln \left(K_{\mathrm{c}}-K\right)\right|^{1 / 8}
$$

and

$$
J \chi_{11}(K) / m^{2} \sim 0.90-3.9\left(K_{\mathrm{c}}-K\right)^{1 / 2}\left|\ln \left(K_{\mathrm{c}}-K\right)\right|^{-1 / 8} .
$$

Corresponding amplitudes are of similar sign, and can be compared in magnitude in the following sense. For the spherical model the product of the amplitudes of the singular parts of χ_{1} and χ_{11} is exactly $-\frac{1}{2}$, which is just the value of $-J_{\chi_{11}}\left(K_{\mathrm{c}}\right) / \mathrm{m}^{2}$. This is not just numerology, but follows from equations (60) and (62) in Barber. That is, these observations can be made without knowing the values of the amplitudes. The corresponding amplitudes in the $n=0$ case give -0.90 for the products of the amplitudes of the singular parts, which is in precise agreement with the value of $-J_{\chi_{11}}\left(K_{\mathrm{c}}\right) / m^{2}$ for this model. Whether this is a feature of all four-dimensional n-vector models remains to be seen.

Acknowledgments

One of the authors (A J Guttmann) would like to thank S G Whittington and R Dekeyser for helpful conversations. The financial support of the ARGC is gratefully acknowledged.

References

Barber M N 1974 J. Statist. Phys. 10 59-88
Barber M N, Guttmann A J, Middlemiss K M, Torrie G M and Whittington S G 1978 J. Phys. A: Math. Gen. 11 1833-42
Brézin E, Le Guillou J C and Zinn-Justin J 1976 Phase Transitions and Critical Phenomena vol 6, ed C Domb and M S Green (London: Academic)
Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (London: Academic)
Guttmann A J 1978 J. Phys. A: Math. Gen. 11 L103-6
Lubensky T C and Rubin M H 1975a Phys. Rev. B 114553
——1975b Phys. Rev. B 123885

